
Algorithm 8xx: PIRO BAND, Pipelined Plane
Rotations for Blocked Band Reduction

TIMOTHY A. DAVIS and SIVASANKARAN RAJAMANICKAM

University of Florida

PIRO BAND is a library for bidiagonal reduction of unsymmetric banded matrices and tridiagonal
reduction of symmetric banded matrices. It supports both real and complex matrices stored in
packed band format. The software also can handle single and double precision arithmetic with
32-bit and 64-bit integers. We provide both a C library and MATLAB callable interfaces. The
library is about 2 to 7 times faster than LAPACK’s band reduction routines. It is about twice as
fast as the SBR toolbox for larger matrices.

Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Soft-
ware—algorithm analysis, efficiency

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Band Reduction, Band Matrices

1. OVERVIEW

Band reduction methods are an important part of algorithms for eigen value com-
putations of symmetric band matrices and the singular value decompositions of un-
symmetric band matrices. Band reduction algorithms use plane rotations [Givens
1958] or Householder transformations [Lang 1993] to reduce the band matrix to the
desired form.

LAPACK libraries’ [Anderson et al. 1999] band reduction methods are explained
in [Kaufman 2000] and [Kaufman 1984]. They use a technique for reducing and
chasing more than one entry that are each separated by a particular distance. Band
reduction methods that use dense matrix kernels are discussed in [Bischof et al.
2000b]. The SBR toolbox [?] [Bischof et al. 2000a] is optimized to take advantage
of the BLAS and the memory heirarchy. The framework of SBR can choose to
optimize between the floating point operations, available workspace and using the
BLAS. Both the LAPACK and SBR methods are based on the idea of reducing
diagonals of the matrix and chasing the fill introduced in [Rutishauser 1963] and
[Schwarz 1963]. In [Rajamanickam and Davis 2009] we show that we can use the

Dept. of Computer and Information Science and Engineering and Univ. of Florida, Gainesville,
FL, USA. email: davis@cise.ufl.edu. http://www.cise.ufl.edu/∼davis. Dept. of Computer and
Information Science and Engineering and Univ. of Florida, Gainesville, FL, USA. email: sraja-
man@cise.ufl.edu. http://www.cise.ufl.edu/∼srajaman. This work was supported by the National
Science Foundation, under grants xxxx and xxxx.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c⃝ 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY, Pages 1–7.

Siva Rajamanickam

Siva Rajamanickam

2 · Rajamanickam and Davis

technique to reduce one row/column at a time introduced in [Schwarz 1968] can
be used efficiently combined with blocking. When the plane rotations to reduce
the matrix are pipelined it lead to algorithms that are faster than both LAPACK
and SBR toolbox. In [Rajamanickam and Davis 2009] we also showed that we can
utilize the non-zero pattern while accumulating the plane rotations in the left and
right. This lead to performance improvements over both LAPACK and SBR band
reduction routines. See [Rajamanickam and Davis 2009] for detailed performance
comparisons. We implement the algorithms described in [Rajamanickam and Davis
2009] in the library PIRO BAND.

PIRO BAND is a library for tridiagonal reduction of symmetric matrices and
bidiagonal reduction of unsymmetric band matrices. We also provide functions to
compute the band singular value decomposition using the band reduction functions
and a simplicial left looking band QR factorization.

Section 2 introduces the features in the PIRO BAND library. We summarize
some additional performance results of PIRO BAND in section 3.

2. FEATURES

PIRO BAND is a library with both MATLAB and C interfaces for band reduc-
tion. The C interfaces are described in 2.1 and 2.2. The MATLAB interfaces are
described in 2.3.

PIRO BAND accepts general sparse and dense matrices in the MATLAB inter-
face. The C library requires the input matrices to be in the packed band format
: Given a m-by-n matrix A with bl diagonals in the upper triangular side and bu
diagonals in the upper triangular size the packed band data structure is of the size
(bl+bu+1)-by-n where entry A(i, j) will be stored in (i− j + bu, j). The MATLAB
interface will accept both sparse/dense matrices and convert them to band form
using the structure of the matrix(sparse) or the numerical values(dense).

Both the C interface and the MATLAB interface support real and complex ma-
trices. Complex matrices are expected to be stored in the C99 style complex format
where the real and imaginary part of every entry is stored in consecutive memory
locations. C99 is not expected for compiling and using the libraries though. But
the test coverage for the library will require C99 support. PIRO BAND C libraries
does not support complex matrices where the real and imaginary part are stored
in separate arrays.

2.1 PIRO BAND interface

The primary function for band reduction is reduce. There are eight different ver-
sions of this function for all the combination of double precision and single precision
arithmetic, real and complex matrices and 32-bit and 64-bit integers. The eight ver-
sions of the functions can be defined as:

piro_band_reduce_<x><y><z>
x := ’d’ | ’s’ (for double or single precision)
y := ’r’ | ’c’ (for real of complex matrices)
z := ’i’ | ’l’ (for 32-bit or 64-bit integers)

For example, piro band reduce dri, is the function name for using double preci-
sion arithmetic for reducing a real band matrix with 32-bit integers. The prototype

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Siva Rajamanickam

Algorithm 8xx: PIRO BAND, Pipelined Plane Rotations for Blocked Band Reduction · 3

for this function will be

int piro_band_reduce_dri
(

int blks[], int m, int n, int nrc, int bl, int bu, double *A,
int ldab, double *B1, double *B2, double *U, int ldu, double *VT,
int ldv, double *C, int ldc, double *dws, int sym

)

The reduce functions destroy their input matrix A as they reduce it to bidiago-
nal/tridiagonal form. The two diagonals are alway returned. The plane rotations
are accumulated in the right and left only if they are required. We don’t provide
separate interface for symmetric and unsymmetric matrices. Instead we use an
input flag to differentiate between the two (sym).

All the eight versions of the reduce functions require an optional block size(blks)
and a workspace(dws) as a parameter. blks[] is an array of size four where the first
two entries specify the number of columns and rows in the block for the reducing
the super diagonals. The next two entries specify the number of rows and columns
in the block for reducing the sub diagonals. The block size can be different for
reduction in the upper triangular and lower triangular part. The work space should
be two times the maximum of the two block sizes. To find the recommended block
size we recommend using the function piro band get blocksize if you use 32-bit
integers. The 64-bit version of the function has a suffix l. PIRO BAND will get
the recommended block size and allocate the required work space if they are not
passed to the library. See the [gen 2009] for the exact prototype and the description
of the parameters. We explain how we choose the block size and the impact on the
performance below.

PIRO BAND interface will have some differences from the LAPACK style in-
terface we provide (described below). But it will be faster as it will avoid few
transposes. The major differences are :

—PIRO BAND requires the upper bandwidth to be one.

—For symmetric matrices PIRO BAND will require the upper triangular part to
be stored.

—PIRO BAND finds CT U instead of UT C, and V instead of V T , as in LAPACK.
These are more efficient to compute.

The LAPACK style interfaces given below will not have any of these restrictions.

2.2 LAPACK style interface

The LAPACK style interface supports all the eight functions for band reduction
in the LAPACK library. The corresponding function names in PIRO BAND will
have a prefix piro band added to it. For example, LAPACK’s band reduction
function dsbtrd will be piro band dsbtrd in our interface. For the version that
supports 64-bit integers we add a suffix l to the function name. The interface will
have the exact functionality as the LAPACK libraries except a one difference : the
return values of the functions are slightly different. Like LAPACK’s functions, a
return value of zero is success and a negative value will mean failure. But the exact
error codes are different from LAPACK’s functions as we use the one function for

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Siva Rajamanickam

4 · Rajamanickam and Davis

symmetric and unsymmetric matrices. A return value of -i may not indicate the
ith argument is invalid in the LAPACK style interfaces.

2.3 MATLAB interface

The MATLAB interface provides the following functions.
piro band Bidiagonal reduction routine for band matrices
piro band qr QR factorization of a band matrix
piro band svd SVD of a band matrix
piro band lapack MATLAB interface to the LAPACK style interfaces
storeband Store a sparse/full matrix in packed band format

The MATLAB functions piro band and piro band lapack are straightforward
interfaces for the band reduction functions. storeband finds a band structure, if
one exists, and stores the matrix in band format. It uses the numerical values when
the input is a dense matrix. It use the structure of the matrix if the input is sparse
to find the band matrix.

The function piro band svd computes the singular value decomposition of a
band matrix. We will be able to compute both the full and economy singular
value decomposition of the band matrix. The usage also supports finding only
the singular values. We use our band reduction algorithm to reduce the matrix
to bidiagonal/tridiagonal form. We use LAPACK (bundled within MATLAB) to
diagonalize bidiagonal/tridiaonal matrix to compute the singular values. We use
a simplicial left-looking QR factorization, and then reduce the upper triangular
banded matrix R to find the economy singular value decomposition.
piro band qr provides a MATLAB interface for this left-looking band QR fac-

torization. It provides an option to find both Q and R and an option to find the
householder vectors instead of Q. See [gen 2009] for the exact usage of all these
functions.

3. PERFORMANCE

All the performance results here were taken on a machine with sixteen dual core 2.2
GHz opteron processors with 64GB of main memory. We used MATLAB 7.6.0.324
(R2008a). PIRO BAND was compiled with gcc version 4.1.1 with the option -O3.

3.1 Choosing a Block Size

Choosing the right block size for different machines is a difficult problem. We
provide a function in C that estimates the recommended block size based on the
number of floating point operations. The function will not optimize block size for a
specific hardware or compiler. The simple rule we use is to use the block size of 8-
by-8 when the required flops is less 1e+10 and the block size of 32-by-32 otherwise.
This will be our default block size.

To verify this simple block size selection we compare five different options : an
entire row as the block, block sizes of 8-by-8, 16-by-16, 32-by-32 and 64-by-64.
When we use the entire row as the block size we will perform exactly the same
amount flops as Schwarz’ row reduction method. We will perform few more flops
for the other four blocking sizes. Figure 1 shows the performance comparison of
various block sizes in relation to the default block size. When the flop count is
smaller 8-by-8 is the ideal block size. As the flops reach 1e+10 there are a few cases

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Siva Rajamanickam

Algorithm 8xx: PIRO BAND, Pipelined Plane Rotations for Blocked Band Reduction · 5

108 109 1010 1011 1012
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
PIRO_BAND Relative Block size Performance

FLOPS

bl
k

tim
e/

de
fa

ul
t t

im
e

blk=row
blk=8
blk=16
blk=32
blk=64

Fig. 1. Performance of piro band reduce for different block sizes

where 16-by-16 is better. But 32-by-32 are ideal when the flop count is higher. Note
that except choosing the entire row as the block, all the other block size perform
within 30% of the default size. We can also see that 64-by-64 is almost as good
as 32-by-32 for high flops. There can be a cut-off point where 64-by-64 may start
performing better than 32-by-32. We chose to leave the default at 32-by-32 and let
the user experiment for their common problem sizes.

As the block sizes are so platform dependent we repeated this experiment on a
machine with Pentium 3.2 GHz and 4 GB of memory. Though our default case is
not the best as often as shown in figure 1 it was never more than 15% worse than
the best block size.

3.2 Results

We compare the performance results of PIRO BAND’s singular value decompo-
sition and PIRO BAND’s QR factorization with their MATLAB’s equivalents in
this section. Detailed performance results of PIRO BAND package against the LA-
PACK and SBR band reduction routines can be found in [Rajamanickam and Davis
2009].

MATLAB does not have a band singular value decomposition. The sparse singu-
lar value decomposition is too slow when compared with the dense singular value
decomposition, especially when all the singular values are required. So we compare
our band singular value deomposition against the dense algorithm. As we oper-
ate only on the band, our algorithm is asymptotically faster than the dense SVD.
The timing results for finding only the singular values are summarized in the table
below.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Siva Rajamanickam

6 · Rajamanickam and Davis

N Bandwidth PIRO BAND SVD MATLAB DENSE SVD
(seconds) (seconds)

1000 100 1.7 47.1
2000 200 11.2 149.3
3000 300 34.9 306.0
4000 300 64.2 540.5

We compare PIRO BAND’s QR factorization against MATLAB’s dense QR fac-
torization and MATLAB’s sparse QR factorization. The performance results are
provided in the following table.

N Bandwidth PIRO BAND QR DENSE QR SPARSE QR
1000 100 1.5 5.3 11.9
2000 200 14.7 34.0 159.9
3000 300 48.4 106.0 1907.3
4000 300 87.0 239.0 4145.9

We should note that MATLAB’s sparse QR is not a very fast algorithm. As
our QR factorization is a support routine used only for economy singular value
decomposition we use a simplicial algorithm. A true supernodal/multifrontal QR
factorization algorithm (cite spqr) will be able to do better than this algorithm
with a small additional cost in the integer workspace.

4. CONCLUSION

We provide a library for band reduction that supports all the data types with
both C and MATLAB interfaces. PIRO BAND’s band reduction is faster than
LAPACK’s band reduction and SBR’s band reduction routines in the order of 2
to 8 times for the various types of input matrices. Its Singular value decompo-
sition and QR factorization performance is decribed here. PIRO BAND is avail-
able as a collected ACM TOMS algorithm. The Software can be downloaded at
http://www.cise.ufl.edu/research/sparse. PIRO BAND’s MATLAB interface uses
LAPACK libraries that come bundled with MATLAB. Other than that PIRO BAND
does not have any other dependencies.

REFERENCES

2009. PIRO BAND user guide.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. 1999. LAPACK Users’

Guide, Third ed. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Bischof, C. H., Lang, B., and Sun, X. 2000a. Algorithm 807: The SBR toolbox—software for
successive band reduction. ACM Trans. Math. Softw. 26, 4, 602–616.

Bischof, C. H., Lang, B., and Sun, X. 2000b. A framework for symmetric band reduction.
ACM Trans. Math. Softw. 26, 4, 581–601.

Givens, W. 1958. Computation of plane unitary rotations transforming general matrix to trian-
gular form. Journal of the Society of Industrial and Applied Mathematics. 6, 1, 26–50.

Kaufman, L. 1984. Banded eigenvalue solvers on vector machines. ACM Trans. Math.

Softw. 10, 1, 73–85.

Kaufman, L. 2000. Band reduction algorithms revisited. ACM Trans. Math. Softw. 26, 4, 551–
567.

Lang, B. 1993. A parallel algorithm for reducing symmetric banded matrices to tridiagonal form.
SIAM J. Sci. Comput. 14, 6, 1320–1338.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Siva Rajamanickam

Algorithm 8xx: PIRO BAND, Pipelined Plane Rotations for Blocked Band Reduction · 7

Rajamanickam, S. and Davis, T. A. 2009. Blocked band reduction for symmetric and unsym-
metric matrices. Submitted to ACM Trans. Math. Softw..

Rutishauser, H. 1963. On Jacobi rotation patterns. Proceedings of Symposia in Applied Math-

ematics 15, 219–239.

Schwarz, H. R. 1963. Algorithm 183: Reduction of a symmetric bandmatrix to triple diagonal
form. Communications of the ACM 6, 6, 315–316.

Schwarz, H. R. 1968. Tridiagonalization of a symmetric band matrix. Numer. Math. 12, 4,
231–241.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Siva Rajamanickam

Siva Rajamanickam

